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ABSTRACT 

Pressure distributions on a hemisphere-cylinder at a Mach number 
of 10 and at angles of attack up to 25 deg are presented.    These experi- 
mental distributions are compared with hypersonic blunt-body analytical 
and numerical solutions.    Experimental stagnation point velocity grad- 
ients,  sonic point locations,  and pressure drag coefficients for hemi- 
spheres at Mach numbers from 1. 8 to 21 have been compiled,  and 
empirical relations are developed for these parameters as functions of 
Mach number. 

in 
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SECTION I 
INTRODUCTION 

The development of ballistic missiles which re-enter the earth's 
atmosphere at hypersonic speeds has made the problem of aerodynamic 
heating one of primary importance.    The heating is most severe at the 
nose,   and since state-of-the-art cooling techniques preclude the use of 
a sharp nose,  blunt-nosed vehicles are used.    Therefore,  the supersonic 
and hypersonic aerodynamic characteristics of blunt bodies have received 
considerable attention. 

Theoretical studies of blunt-body flows followed many approaches 
as outlined by Van Dyke in Ref.   1.    Two of the most successful appear 
to be the numerical method of Van Dyke (Refs.   1 and 2) and the empirical 
modifications of the Newtonian theory suggested by Lees and Kubota 
(Refs.   3 and 4).    Concurrent with the theoretical studies,  many experi- 
mental investigations,   primarily at Mach numbers less than five,   have 
been conducted (e.g.,  Refs.   5 through 20).    The hemisphere,  because 
of its simple geometry,   has been the most extensively investigated of 
the various blunt bodies.    Interest in the aerodynamic characteristics of 
the hemisphere,  together with the knowledge that the pressure distribu- 
tion on a hemisphere could be very sensitive to flow deviations in a wind 
tunnel, led to the adoption of this body as an AGARD calibration model 
(E) by the AGARD Wind Tunnel and Model Testing Panel in 1957 (Ref.   21). 

The hemisphere-cylinder is a configuration which has been of practical 
concern since the early development stages of re-entry vehicles.    There 
have been many theoretical and experimental studies of the hemisphere- 
cylinder at zero angle of attack,   and Ref.   22 presents a summary of several 
of these studies.    However,  there have been very few investigations of the 
flow over a hemisphere-cylinder at angles of attack other than zero. 

The purpose of the present investigation was to complement the 
results of the earlier experimental studies on hemispheres and 
hemisphere-cylinders by testing these bodies at a higher Mach number 
and,  in the case of the hemisphere-cylinder,   at angles of attack other 
than zero.    By combining the present data with data from Refs.   5 through 
20,   a compilation of experimental results for hemispheres over a large 
range of Mach numbers could be made.    Such a compilation would be of 
value in missile development studies and in wind tunnel calibrations. 

The experimental tests described in this report were conducted in 
the 50-in.  hypersonic tunnel (Gas Dynamic Wind Tunnel,   Hypersonic (C)) 
of VKF,   AEDC.    Two models having diameters of 1. 38 and 5. 80 in. 
were tested at a nominal Mach number of 10 and at Reynolds numbers, 
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based on body diameter,  of 0. 15 x 10^ and 0. 63 x 10^,  respectively. 
The angle-of-attack range was from 0 to 25 deg. 

SECTION II 
APPARATUS AND PRECISION OF MEASUREMENTS 

2.1   TEST FACILITY 

Tunnel C is an axisymmetric,   continuous  flow, variable-density 
wind tunnel with a 50-in. -diam test section.    The contoured nozzle 
produces a nominal test section Mach number of 10 at stagnation pres- 
sures from 200 to 2000 psia and stagnation temperatures up to 1900°R. 
Further details on Tunnel C are given in Ref.   23. 

The present tests were conducted at a Mach number of 10. 05 with 
a stagnation pressure of 1000 psia and a stagnation temperature of 
1850°R,  producing a free-stream unit Reynolds number of 0. 108 x 106 
per inch. 

2.2  MODELS 

Two hemisphere-cylinder models were utilized in the test program. 
A large model having a diameter of 5. 80 in.   and a length of 38 in.  was 
used to obtain the hemisphere data.    The cylindrical portion of this model 
was used to obtain cylinder data for length-to-diameter ratios of 0. 5 to 6. 
Pressure orifices were located around the hemisphere in 10-deg incre- 
ments and along the cylinder in approximately 2-in.  intervals.    The ori- 
fices were 0. 067 in.  in diameter and were located within a tolerance of 
±0. 2 deg on the hemisphere.    A small model having a diameter of 1. 38 in. 
and a length of 3 9 in.  was used to obtain cylinder data for length-to- 
diameter ratios of 1 to 28.    With the exception of an orifice at the geo- 
metrical stagnation point,  this model had no orifices on the hemisphere. 

2.3   PRECISION OF MEASUREMENTS 

Several sources of error were present in the experiment.    These 
errors may be considered as being in two categories - fixed and random. 
The fixed errors which were present throughout the test included trans- 
ducer nonlinearities and free-stream Mach number uncertainties.    The 
random errors varied during the tests and included instrument zero 
shifts,   angle-of-attack inaccuracies,   dimensional inaccuracies in orifice 
locations (considered as random in this test because the data were analyzed 
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using    0m + a    as the surface angle,  thus incorporating several com- 
binations of orifice location and angle of attack into each averaged 
value),  and model distortions attributable to thermal gradients from 
the windward to leeward side.    The absolute errors could be evaluated 
from transducer and tunnel calibrations,   and the random errors were 
estimated by comparing a number of repeat runs with the two models. 
The indicated total uncertainties in the data are given in the table below: 

p/pt 1.0 to 0.2 0.2 to 0.04 0.04 to 0.008 

Uncertainty, ±1 to 3 ±3 to 5 ±5 to 10 
percent 

SECTION III 
RESULTS AND DISCUSSION 

3.1   HEMISPHERE 

The experimental surface pressure distribution over the hemisphere 
at Mach number 10. 05 is presented in Fig.   la.    In this figure, the sur- 
face pressure has been normalized with respect to the stagnation pres- 
sure behind a normal shock,  pt  .    The abscissa of the plot,   0 =     0m + a   , 
is the absolute value of the angle between an orifice and the physical stag- 
nation point,  i. e. ,  the point where the surface tangent is normal to the 
free-stream flow.    As was mentioned previously,  the orifices were spaced 
in 10-deg increments from 0m = -90 to 90 deg,  and the angle of attack was 
varied from 0 to 25 deg in 5-deg increments.    Combinations of 0m and a 
allowed four to six pressure measurements to be made at each value of 0. 
Since there was no measurable effect of the cylindrical afterbody on the 
hemisphere pressures,  the data points shown in Fig.   la are arithmetical 
averages of the measurements,   and the repeatability of the data was within 
the uncertainty limits presented in Section 2. 3.    These averaged pressure 
ratios are also tabulated in Table I. 

A comparison of the experimental results with two blunt-body theories 
is presented in Fig.   lb.    The theoretical distribution determined by match- 
ing a method of characteristics solution to the Van Dyke numerical solu- 
tion at a surface Mach number of 1. 05 (0 = 42. 8 deg) was obtained from 
calculations by C.  H.  Lewis of VKF.     The calculation procedure is 
described in Ref.  24.    This distribution is in excellent agreement with 
the experimental results for 0 = 0 to 50 deg.    At angles greater than 
50 deg,  the experimental data are above the theoretical curve.    This dis- 
crepancy may,be the result of boundary-layer growth on the hemisphere 
which effectively increases the local surface inclination and,  hence,  the 
surface pressure.    The influence of viscous effects on the pressure at 
the shoulder (0 = 90 deg)  is discussed later.     The distribution 
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predicted by the modified Newtonian theory (Ref.   3) is higher than the 
experimental data for 0 = 0 to 60 deg.    For angles greater than 60 deg, 
the theory predicts a too rapidly decreasing pressure and is substantially 
in error at 0 = 90 deg.    Matching the modified Newtonian theory to a 
Prandtl-Meyer expansion (Ref.   4) at 0 = 55. 2 deg (M - 1.36),  which is 
the point on the surface where both the pressure and pressure gradient 
predicted by these two solutions are equal,  greatly improves the theo- 
retical estimate for 0 > 60 deg. 

Three aerodynamic characteristics of a hemisphere which may be 
determined from the pressure distribution are the stagnation point 
velocity gradient,  the sonic point location,   and the pressure drag coef- 
ficient.    These characteristics have been determined from the experi- 
mental pressure distribution and are discussed in the following 
paragraphs. 

The stagnation point velocity gradient is of considerable importance 
since it has been shown,  by Fay and Riddell (Ref.   25) and others,  that 
the stagnation point heat transfer is proportional to the square root of 
this parameter.    The stagnation point velocity gradient may be presented 
in several forms.    The Mach number gradient,   (dM/d0)o,  is used in this 
report because it is relatively insensitive to the free-stream Mach number 
and,  as will be shown later,  when the velocity gradient is in this form,  it 
may be correlated as a function of 1/M^  .       Other forms of the velocity 
gradient may be easily obtained from the Mach number gradient,  for 
example: 

§). - ^r  (w\ ■ ""= (1> 

ftD   =  /du\  _D_        V 2(y+l)   /dM\ = 2   2+ (y-DMpo        /dM\ 

"«   !S  Wo   H»   "       u^/a*      U/0"      ""    2Mj W (2) 

^■ea^^^fe)©. (y + l) 
2 M„ 

2+(y-l)Moo
2_ 

/dM\ 

dö/o        (3) 

To determine the surface Mach number,  it is assumed that the flow over 
the hemisphere,  at the outer edge of the boundary layer,  is isentropic 
with a stagnation pressure equal to pt2-    The correctness of this assump- 
tion has been verified experimentally (e.g.,  Ref.   9).    The local Mach 
number may then be obtained from the isentropic relation, 

y 
_p_ _ /i , y-lu2\ y-i 
p
t2 

= (1 + V-M j   ' (4) 



AEDC-TR-66-179 

Differentiating Eq.   (4) with respect to 0 and rearranging terms gives 

2y-i 

i + ^M^-1     d(p/Pt2) dM 

dö y M dö 
(5) 

Since both d(p/pt9)/d0 and M are equal to zero at 0 = 0,   an alternate form 
is necessary.    From the modified Newtonian theory, 

(a  =i-(i-t) (6) 
l ewtonian 

and 

"(p/p
tJ 

d sin  0 
I ewtonian i1 - £) <7> 

Since the Newtonian theory shows that the derivative of p/pt2 with respect 
to sin^0 is constant for a given Mach number,  it can be assumed that the 
derivative,  at least for small values of 0,  will be nearly constant for 
experimental data.    The experimental distribution is plotted as a function 
of sin20 in Fig.   2a,  and it is seen that the slope of the curve is essentially 
constant for values of 0 less than 20 deg.    Thus,  an accurate value of 
d(p/pt<j)/d(sin20) may be obtained from the experimental data.   Equation (5) 
is then rewritten as 

2y-i 
■^(i+r^M-p^r- d(p/Pt2) 

dö yM d(sin20) 

Evaluating this relation at 0 = 0 gives 

(8) 

'(p/pO 
W     V    \y)  d(sin2ö) ia; 

From Fig.   2a and Eq.   (9) it is determined that (dM/d0)o = 1. 27 for the 
M,,, = 10. 05 experimental data.    The modified Newtonian and Van Dyke 
theoretical solutions are also shown in Fig.   2a and give values of 1. 19 
and 1. 30,  respectively for (dM/d0)o at M„, = 10. 

The sonic point location,   0*,  is the point on the hemisphere where 
the local Mach number,   at the outer edge of the boundary layer,   is equal 
to unity.    Since isentropic flow has been assumed,  the sonic point loca- 
tion is that value of 0 at which p/pto ~ 0- 528.    For the present data, 
0* =41.5 deg.    Modified Newtonian and Van Dyke theoretical solutions 
give sonic point locations of 43. 5 and 40. 6 deg,  respectively,   at M,,, = 10. 

The current trend in re-entry vehicles is toward slender,   low drag 
configurations.    For this type of body the drag of a spherical nose may be 
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70 to 80 percent of the vehicle's total pressure drag.    Therefore,   it is 
essential to have accurate experimental measurements of the drag of 
spherical segments.    The forebody pressure drag on a spherical seg- 
ment is given by 

277 D   =   2nJ       (p   -   pj  rdr (10) 
o 

where r is the local radius and rg is the base radius as shown below. 

In coefficient form,  referenced to the area,  TTR.2, 

CD 
£B/R) 

yM«, o 
- i\ a 

2 

(r) 
or in terms of 6, 

sin  u-g 

CD   =  -?-_   f (-P-   -   1^   d(sin20) 

then, 

CD 
yM r) /   B (£> ^ ~* in UB (ID 

Thus,   Cfj can be determined by graphical or numerical integration from 
a plot of p/pto versus sin^e (Fig.   2b).    The results of an integration of 
the experimental data are shown in Fig.   3 where CD is plotted as a func- 
tion of the base angle,   ög.    For spherical segments with 0g < 0* the drag 
coefficient is only approximate since cutting a sphere ahead of the char- 
acteristic sonic point will force the sonic point to be located on the shoulder. 
This will modify the pressure distribution and,   consequently,  the drag.    Un- 
published experimental results (Trimmer,   VKF) obtained at M,,, = 10 on 
two models with 9j$ = 14. 3 and 30. 0 deg are presented in Fig.   3 as an indi- 
cation of the drag reduction which results from cutting a sphere ahead of 
the sonic point.    The experimental drag coefficient of the full hemisphere 
(0j3 = 90 deg) is 0. 90.    The drag coefficients calculated from the modified 
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Newtonian and Van Dyke-method of characteristics theoretical solutions 
are included in Fig.  3 and for the full hemisphere have values of 0.9 2 
and 0. 87,   respectively. 

A correlation of the data obtained in the present tests with previously 
published results (Eefs.   5 through 20) is presented in Figs.  4 through 7. 
The references used in these correlations were restricted to those con- 
taining data obtained at Mach numbers greater than 1. 8 with models 
having a diameter of 1. 0 in.   or larger.    Included in these figures are 
unpublished data obtained at Mach numbers of 6,  8,  and 10 by R. K. 
Matthews and L.   L.   Trimmer of VKF,   using the 5. 80-in. -diam model 
described in Section 2. 2.    A tabulation of model sizes and test condi- 
tions for the referenced data is given in Table II. 

The experimental surface pressure distribution on a hemisphere at 
Mach numbers from 1. 9 through 21 are shown in Fig.  4.    Twelve sources 
of data were used in obtaining the data fairings shown.    For the sake of 
clarity,  individual data points are not presented since the curves are 
based on a total of 275 points.    Data scatter was small,  and approxi- 
mately 90 percent of the data points are within ±0. 02 of the Cp/Cp 

values given by the faired curves.    From the stagnation point to 
about 55 deg,  there is no effect of Mach number on the distribution, 
which is lower than that predicted by the modified Newtonian theory. 
For values of 9 greater than 55 deg,   Mach number effects are apparent 
with the largest effect at the shoulder,   0 = 90 deg.    The variation of the 
shoulder pressure coefficient with Mach number is presented in Fig.   5. 
An empirical relation for this pressure coefficient as determined from 
Fig.   5b is 

CD    \ 0.511 
\ 0.0464 - -_ (12) 

m ax P_-_/ (9=90c 

For comparison, the results of two theoretical inviscid calculations and 
the result of a calculation (Van Dyke solution with method of character- 
istics) at Ma = 18 including a viscous boundary layer (Ref.   10) are 
included in Fig.  5.    The inviscid solutions are consistently below the 
experimental data,  and it may be seen that the effect of viscosity on the 
shoulder pressure is slight for the indicated conditions. 

In Fig.   6,  the stagnation point Mach number gradient,  the sonic 
point location,  and the pressure drag coefficient of the hemisphere are 
presented as functions of Mach number.    For convenience, the stagna- 
tion point velocity gradient, ßD/u^,  is also presented in Fig.   6.    This 
curve was obtained by applying Eq.   (2) to the faired data in Fig.  6a. 
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In determining 0* from the M^ =10 through 21 pressure data,   a perfect 
gas flow with 7 = 1.4 was assumed,   i. e. ,   gas imperfections were 
neglected.    Included in the drag coefficients are force measurements 
by Nichols and Nierengarten (Ref.   13) which agree very well with the 
pressure measurements.    Equations for (dM/d0)o,   0*,   and CD developed 
from the modified Newtonian theory indicate that these parameters are 
directly proportional to 1/M^.    The data presented in Fig.   7 verify 
that this relation also applies to the experimental values of the param- 
eters.    Thus,   empirical equations could be developed for each of the 
parameters: 

AlM\     =   L254   _   MIS»       |   „l(!ian (1;n 
M   2 

0*   =  41.44  + 1M1  (   deg (14) 

CD   =   0.901   -  M62. (15) 
CO 

The data presented in Fig.   7,   with the exception of the data from Ref. 12 
which appeared to be consistently low,   are within ±5 percent of the 
values given by these equations. 

Also shown in Fig.   7 are the theoretical values predicted by the 
modified Newtonian theory and the Van Dyke-method of characteristics 
numerical solutions.    The latter numerical values were obtained from 
the previously mentioned calculations of C.   H.  Lewis and from Ref. 26. 
There was some uncertainty (±2 percent) in the numerical solutions for 
0* and CD as a result of inaccuracies in the computer computations. 

Van Dyke (Ref.   27) suggested that the pressure distribution over 
the subsonic portion of a hemisphere could be represented by the 
power series, 

P
(ö)

= l _ b2Ö
2 - M4 - ... (16) 

pt2 

If this relationship is substituted into Eq.  (5),   it is seen that the coef- 
9 

ficient of 0    is given by 

b. L.   Ä (17) 
2 

Thus,  the value of this coefficient may be determined from Fig.   7a.    For 
example,   at an infinite Mach number the experimental data fairing gives 
(dM/d0)o - 1. 254 and b2 - 1. 10,  whereas Van Dyke's numerical solution 
gives b2 = 1. 20. 
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3.2  HEMISPHERE-CYLINDER 

Surface pressure distributions on the hemisphere-cylinder,   along 
the windward meridian line,   at M^ = 10. 05 and angles of attack from 
0 to 25 deg are presented in Fig.   8.    Data from both models are 
included and are in excellent agreement.    Shown in the figure are 
axisymmetric (a = 0) numerical calculations for spherically blunted 
cones with half angles equal to the cylinder angle of attack.    These 
results were obtained by C.   H.   Lewis using the Van Dyke solution 
matched to a method of characteristics solution (Ref.   24).    Also shown 
are the theoretical values for sharp cones (Ref.   28).    The theoretical 
results for the blunted cones predict the trends of the hemisphere- 
cylinder data very well,   showing the expansion downstream of the 
shoulder and the subsequent compression to an asymptotic value. 
However,   as would be expected,  the cone solution does not accurately 
predict the pressure level on the hemisphere-cylinder because,   except 
for a - 0,  there are cross-flow effects on the cylinder which reduce 
the pressure below that predicted for an axisymmetric cone. 

SECTION IV 
CONCLUDING REMARKS 

Surface pressure distributions were measured on a hemisphere- 
cylinder at a Mach number of 10. 05 and at angles of attack up to 25 deg. 
These pressure distributions were compared with theoretical calcula- 
tions and experimental results from tests at supersonic and hypersonic 
Mach numbers.    The following results were obtained: 

1. The M^ = 10. 05 experimental pressure distribution on 
the hemisphere agrees very well with a numerical solu- 
tion (Van Dyke-method of characteristics) from the stag- 
nation point to about 0 = 60 deg. For values of 0 greater 
than 60 deg the modified Newtonian theory combined with 
a Prandtl-Meyer expansion is in good agreement with the 
data. 

2. The pressure distribution on a hemisphere is independent 
of free-stream Mach number (M^, = 1. 9 to 21) for 0 < 55 deg 
when presented as Cp/Cp .    An empirical equation for the 
shoulder (0 = 90 deg) pressure was derived from the experi- 
mental data. 

3. The modified Newtonian theory predicts the drag coefficient 
of spherical segments within four percent at M^ = 10. 
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4. Empirical relations for (dM/d0)o,   0*,   and Cj) as linear 
functions of l/M^ were developed from experimental 
data for the Mach number range of 1.8 to 21.    The Van 
Dyke numerical solution provides a better estimate of 
these characteristics than does the modified Newtonian 
theory.    However,  the modified Newtonian theory pre- 
dicts these characteristics within five percent (except 
for Crj at M^ < 2. 2) for the Mach number range 
investigated. 

5. The pressures along the windward meridian line of the 
hemisphere-cylinder at angle of attack follow trends 
predicted by the axisymmetric numerical solution for a 
spherically blunted cone with half-angle equal to the 
cylinder angle of attack. 
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TABLE I 
EXPERIMENTAL PRESSURE RATIOS FOR HEMISPHERE, M^ =  10.05, RBQ  = 0.63 x 106 

9,  deg p/pt2 0,  deg p/pt2 

0 1.000 
5 0. 992 

10 0.963 
15 0.923 
20 0.871 
25 0. 798 
30 0. 727 
35 0.637 
40 0. 555 
45 0.467 

50 0.388 
55 0.312 
60 0.252 
65 0. 194 
70 0. 152 
75 0. 114 
80 0.085 
85 0.062 
90 0.046 

Note:   These tabulated pressure ratios are the arithmetical averages of 
four to six measurements at each value of 0. 
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TABLE II 
SUMMARY OF TEST CONDITIONS FOR REFERENCED DATA 

Source 

Present Tests (AEDC-VKF) 

Baer (AEDC-VKF) 

Beckwith & Gallagher (NACA-LAL) 

Chauvin (NACA-LAL) 

Cooper & Mayo (NASA-LRC) 

Crawford & McCauley (NACA-LAL) 

Eaves & Lewis (AEDC-VKF)* 

Kendall (JPL-CIT) 

Korobkin (NOL) 

Matthews & Trimmer (AEDC-VKF) 

Nichols & Nierengarten (JPL-CIT)** 

Reference M_ D, in. R 3D x 10-6 

... 10.05 5. 80 0.6 

5 1.99 5.80 1.0 
3.00 2.0 
4.03 2.6 
5.06 3.0 
6.03 2.2 

6 2.00 3.5 4 .6-9.6 
4. 15 1 6 .7-9.1 

7 2.05 3. 98 4.4 
2.54 4.6 
3.04 4.2 

8 4.95 2.0 8-13 

9 6. 8 3.0 0 5-1.0 

10 18-21 4.0 0. 02-0.10 

11 1. 82 
2. 81 
3. 74 
4. 76 

3.0 

12 1. 90 2.0 0.7 
2. 15 0.6 
2.48 0.5 
3.26 0.4 
4.20 0.2 
4. 87 0.2 

-- 6.04 5.8 1.3 
7. 98 0.9 

10.08 0. 6 

13 2.01 3.0 1.0 
3.02 1.0 
5.01 0.4 
9.02 0.3 

*Data obtained at a wall to free-stream stagnation temperature ratio of 
0. 062 to 0. 12,  whereas data from other references were obtained at or near 
equilibrium conditions. 

**Force data 
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Source 

Oliver (GALCIT) 

Perkins, Jorgensen & Sommer 
(NACA-AAL) 

Reichle (NASA-MSFC) 

Stalder & Nielsen (NACA-AAL) 

Stine & Wanlass (NACA-AAL) 

Winkler & Danberg (NOL) 

Zakkay (GASL) 

Reference M„ D, in. ReD x 10~
6 

14 5.8 1.0 0.2 

15 1.97 4.0 4.0 
3.04 1 4.0 
3. 80 1 4.0 

16 1.9 1. 50 1.0 
3.0 0.7 
4.0 0.4 
5.0 0.4 

17 2.67 1.0 0.2-0.7 

18 1.97 4.0 3.0-6. 6 
3.04 1 2.8-4.0 
3.80 2.8 

19 5.01 1.5 0. 1-0.8 
7.97 \ 0.1-0.3 

20 6.0 1. 0 0.3 
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